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Quasi-two-dimensional transport is investigated in a system consisting of a very thin ��1 nm� ferromag-
netic layer sandwiched between two insulating layers. Using the mechanism of skew scattering to describe the
extraordinary Hall effect �EHE� and calculating the conductivity tensor, we compare the quasi-two-dimensional
Hall resistance with the Hall resistance of a massive sample. In this study, a mechanism of EHE �geometric
mechanism of EHE� due to nonideal interfaces and volume defects is also proposed.
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I. INTRODUCTION

Recently there has been an increased interest in the design
and fabrication of new spintronic devices based on the tunnel
magnetoresistance effect1 and the recently discovered spin
torque effect2 in multilayered structures consisting of several
ferromagnetic nanolayers separated by thin insulating barri-
ers. The geometry of such structures also provides the pos-
sibility to investigate some of their quasi-two-dimensional
transport properties and particularly to compare the relation-
ship between diagonal and off-diagonal �responsible for ex-
traordinary Hall effect �EHE�� conductivities in massive and
above-mentioned samples. This study is of great interest to
the field of spintronics since quasi-two-dimensional EHE
may provide an additional mechanism for storing and pro-
cessing information in logic devices.

Basically, three mechanisms of EHE are considered in the
literature. The first mechanism is the skew scattering, intro-
duced by Smit3 and investigated in details in Ref. 4. The
second one is the side-jump mechanism introduced by
Berger.5 Both of these mechanisms are extrinsic, as it was
clarified in Refs. 6 and 7; however, the third mechanism is
intrinsic. It was first discovered by Karplus and Luttinger7

and has been recently reinvestigated in a number of works8,9

using the concept of the Berry’s phase.
In this paper, we studied the influence of the size effect on

EHE in a thin ferromagnetic film sandwiched between two
insulating barriers. In general, the size effect in any transport
properties of thin films can be experimentally observed in the
case when the thickness of the film is smaller than the elastic
mean-free path or, in other words, when the concentration of
impurities in the bulk of the sample is small. We have to
mention here that the side-jump mechanism gives contribu-
tions to EHE proportional to �2, where � is the resistivity of
the sample, while the skew scattering contribution to EHE is
proportional to �. Therefore, for clean samples, where the
size effect may be experimentally observed, the skew scat-
tering is the dominant mechanism of EHE. Besides that, the
intrinsic contribution to EHE due to the Berry curvature de-
pends on the details of the electronic structure, which is less
sensitive to the interface scattering than the usual size effect.
In recent theoretical works,10–13 all three contributions to
EHE were studied in detail. In Refs. 10–12, a two-

dimensional ferromagnet with Rashba spin-orbit interaction
was considered and in Ref. 13 a more general solution in-
cluding three-dimensional samples was investigated. An in-
teresting result was obtained in Ref. 12, where it was proven
that three approaches to the problem, namely, Keldysh, Bolt-
zmann, and Kubo formalisms, give the same results for EHE.
For us it is important to point out that in Refs. 10–13 it was
shown that the skew scattering is the dominant mechanism of
EHE for small concentration of impurities, e.g., for large
mean-free paths of electrons, which is the situation treated in
the present paper. We also note that in the literature cited
above, the size effect was not taken into account. We can
mention the work of Ryzhanova et al.,14 where the influence
of the size effect on EHE was investigated in the system
consisting of two ferromagnetic layers with antiparallel mag-
netizations and a paramagnetic metallic spacer. In that work,
the size effect was due to the difference between the mean-
free paths of electrons with “up” and “down” projections of
the spin but additional scattering of electrons at the interfaces
was not considered.

The present paper is organized as follows. In Sec. II, we
present the model of EHE based on the mechanism of skew
scattering on the bulk and interfacial impurities. We report
our results for the conductivity tensor including finite-size
terms calculated within the framework of Kubo formalism.
We also compare the quasi-two-dimensional Hall resistance
��2D

H � with that of a massive sample ��bulk
H �. Section III dis-

cusses the nonideality of the interfaces and the existence of
volume defects that affect the form of current lines. We pro-
pose a mechanism of EHE �we will refer to it as the geomet-
ric mechanism of EHE� due to these defects using the diffu-
sion equation15 and taking into account that the diffusion
coefficient has an off-diagonal component proportional to the
spin-orbit interaction. We summarize our results and draw
some conclusions in Sec. IV. The details of some calculations
are shown in the Appendix.

II. SKEW-SCATTERING MECHANISM OF EHE IN A
THREE-LAYERED STRUCTURE

We consider a system consisting of a ferromagnetic me-
tallic layer �F� sandwiched between two insulating layers �I�.
The magnetization of the ferromagnetic layer is along the z
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direction, perpendicular to the interfaces. The first interface
�I /F� is considered to be ideally reflecting while the second
one �F / I� is considered as rough so that electrons crossing
this interface undergo diffusive spin-dependent scattering.

The electric current is parallel to the y axis resulting in the
appearance of the Hall field along x direction. In this case

� jx

jy
� = �0

jy
� = ��xx �xy

�yx �yy
��Ex

H

Ey
� ,

Ex
H = −

�xy

�xx
Ey ,

�2D,bulk
H =

�yx

�yy�xx + �yx
2 , �1�

where j� are the current-density components, ��� are diago-
nal and off-diagonal conductivities, Ex

H is the Hall field, and
Ey is the y component of the electric field.

The Hamiltonian Ĥ of the system can be written as

Ĥ =
p̂2

2m
+ �

n

U�r − Rn� + �
n

Hso�r − Rn� , �2�

where U�r−Rn� is the potential of impurities, and Hso is the
spin-orbit interaction between the orbit of electron and the
spin of the impurity. The matrix element of Hso�r−Rn� is
given by Eq. �5�.

For the calculation of �2D,bulk
H , we use the Kubo formula

with vertex corrections responsible for the transverse com-
ponent of the current

��� =
�e2

�a0
4 �

���z�

G���
+ �zz��	��G���

− �z�z�	���, �3�

where 	�� is the velocity vector along the interface, G���
+ �zz��

and G���
− �zz�� are, respectively, advanced and retarded

Green’s functions in mixed coordinate-momentum represen-
tation, and a0 is the lattice constant. To calculate the y-x
component of the conductivity tensor, we use the perturba-
tion theory and take into account only the corrections in
linear order of the spin-orbit interaction

G���
+ �zz�� = G0�

+ �zz��
��� + G0�
+ �zz���

��
�T���

+ ���z��

+ H���
so ���z���G0��

+ �z�z�� , �4�

H���
so ���z�� = i�so���z��a0

2mz�����z, �5�

where T���
+ ���z� and H���

so ���z� are, respectively, the scattering
matrix and the spin-orbit interaction, dependent on the type
of atom at ���z� position; mz� is the unit vector along the mag-
netization and �so is the spin-orbit parameter. Taking into
account that ������z=�x�y�−�x��y, it follows from Eq. �5�
that H���

so ���z��=−H���
so ���z��.

The T matrix in one-site approximation is written as

T������z� = �
n

�
n − ��z��ei��−������−�n��

1 − �
n − ��z��G��n�z,�n�z�
, �6�

����
so ���z� = �

m

ei��−������−�m���m
so, �7�

where 
n is the one-site energy and

G��n�z,�n�z� =
a0

2

�
	

0


2�/a0

�G��zz�d� .

For the binary system AB, 
n and �m
so take values 
A,B and

�A,B
so , respectively. In Eq. �6� ��z� is the coherent potential

that can be found from the system of self-consistent equa-
tions. The first equation of the system is valid for scattering
on both bulk and interfacial impurities,

�
A − ��z��cA

1 − �
A − ��z��G0��n�z,�n�z�
+

�
B − ��z��cB

1 − �
B − ��z��G0��n�z,�n�z�
= 0,

�8�

while the second one is written in the form corresponding
only to the interfacial scattering since we are interested in
calculating the interfacial coherent potential

G��n�z,�n�z� =
G0��n�z,�n�z�

1 − ��z�G0��n�z,�n�z�
. �9�

For the calculation of �xx and �yy, we use Eq. �3� with
Green’s functions diagonal on � and renormalized on the
coherent potential. For the off-diagonal component of the
conductivity, averaging over the impurity distribution yields

�yx =
�3e2mz

�a0
2m2 �

����n�

�y
2�x�

2�G�
+�zz���2�G�

+�z�z���2

�Im�T���
+ ��n�z������

so ��n�z��� , �10�

where ��n�z�� is the impurity position. We keep in Eq. �10�
only the main term with n=m.

For the binary AB structure and purely random distribu-
tion of A and B, summing over �n� gives 
���. It is convenient
to divide �so into average and scattering parts

�A
so = cA�A

so + cB�B
so + cB�A

so − cB�B
so = �̄ + cB
�so, �11�

�B
so = cA�B

so + cB�B
so + cA�A

so − cA�A
so = �̄ − cA
�so. �12�

The average in Eq. �10� is

1

N
�

n

�Tn�z��n
so�z�
 � �̄�cA�A + cB�B� + 
�socAcB��A − �B� ,

�13�

Where

�A =
�
A − ��z��

1 − �
A − ��z��G��n�z,�n�z�
, �14�

�B =
�
A − ��z��

1 − �
A − ��z��G��n�z,�n�z�
. �15�
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According to Eq. �8�, we only take the imaginary part of
the last term in Eq. �13�. We then rewrite Eq. �13� with
renormalized Green’s function

Im� 1

N
�

n

�Tn�z��n
so�z�
� � 
�socAcB

�Im� �
A − ��z���1 − ��z�G0��n�z,�n�z��
1 − 
AG0��n�z,�n�z�

−
�
B − ��z���1 − ��z�G0��n�z,�n�z��

1 − 
BG0��n�z,�n�z� � , �16�

G0��n�z,�n�z� � F0�z� . �17�

Equation �8� for coherent potential is

��E,z� = 
̄ +
cAcB
2F�E,z�

1 − �
̃ − ��E,z��F�E,z�
, �18�

where 
̄=cA
A+cB
B, 
̃=cA
B+cB
A, and 
=
A−
B.
Usually it is convenient to choose 
̄=0. In this case 
̃=

−�cA−cB�
, 
A=cB
, and 
B=−cA
.
Next we assume that the scattering parameters for bulk

impurities such as the scattering potential and concentration
are small enough to keep only the main terms for all values.
In this case, the imaginary part of � is on the order of 
2 so
that, for �yx

bulk, it remains

Im� 1

N
�

n

�Tn�z��n
so�z�
� � 
�bulk

so 
bulk
2 cA

bulkcB
bulk�cA

bulk − cB
bulk�

�Im
F

�1 − cB
bulk
bulk Re F�2�1 + cA

bulk
bulk Re F�2 . �19�

For the interfacial values, the full self-consistent scheme
is necessary. For both bulk and interfaces, we suppose that
the real part of the coherent potential just represents the
renormalization of electron spectrum so that � can be con-
sidered as purely imaginary.

The zero-order Green’s function can be found from the
Schrodinger equation in �-z representation �we will further

use the units with energy dimension �L�= Ȧ�

G0�
+ �0 � z� � z � z1�

�
1

2ik1��q + ik1�2eik1a − �q − ik1�2e−ik1a�
��q

− ik1�eik1�z−z1� − �q + ik1�e−ik1�z−z1����q + ik1�eik1z�

− �q − ik1�e−ik1z�� , �20�

where

k1 = 
kF
↑2 − �2 + i

2kF
↑

l1
� c1 + id1,

c1 = 
1
2�
�kF

↑2 − �2�2 +
4kF

↑

l1
+ �kF

↑2 − �2��,

d1 = 
1
2�
�kF

↑2 − �2�2 +
4kF

↑

l1
− �kF

↑2 − �2��,

q = 
q0
2 + �2 q0

2 = 2m
�2 �U − EF�,

0 and z1 are the coordinates of the left and right interfaces, a
is the layer thickness; kF

↑ and l1 are the Fermi momentum and
the mean-free path for spin up, respectively, c1d1=�F

↑ / l1 �for
spin down we use indices ↓ and 2�, U is the height of the
potential barrier, and EF is the Fermi energy. The poles of the
Green’s function in Eq. �20� define the quantized energy
spectrum of the thin ferromagnetic layer.

A. Calculation of the bulk quasi-two-dimensional
diagonal conductivity

For �xx=�yy in Eq. �3�, we take into account the scatter-
ing at the interface, which is responsible for the size effect,
as well as the scattering in the bulk of the sample by using
the Dyson equation with renormalized Green’s function

G��zz�� = G0��zz�� + G0��z0��G��0z�� = G0��zz��

+
G0��z0��G0��0z��

1 − G0��00��
. �21�

Integrating over z� from zero to z for z��z and from z to
a for z��z gives the conductivity in the units �−1 cm−1. The
complete expression for the diagonal conductivity is shown
in the Appendix. For sufficiently thick layers, averaging out
the oscillations yields the averaged expression

��xx
↑ 
 =

�0l1108

2�kF
↑ 	 �3d�

c1
�1 −

l1

a

�Im ��c1 sinh 2d1a

�q2 + c1
2 + ���2 + 2q Re ��sinh 2d1a + 2c1�Im ��cosh 2d1a

� , �22�

where �0= e2

2�� = 10−3

13.6��−1� is the elementary conductivity of
one channel.

The first term in Eq. �22� is the conductivity of the mas-
sive sample whereas the second one is due to the quasiclas-
sical finite-size effect. For the large thickness of the ferro-

magnetic layer �a / l1�1�, the latter term is small. However,
in the opposite limit �a / l1�1� the scattering at the interface
becomes dominant and the total conductivity is proportional
not to the bulk mean-free path but to the interfacial mean-
free path, which is inversely proportional to Im �. The total
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conductivity given by the sum of the contributions from the
two spin channels is shown in Fig. 1 as a function of the
layer thickness.

B. Calculation of the off-diagonal conductivity due to the spin-
orbit interfacial scattering

We now calculate �xy
↑ �z� using Eq. �10� with the Green’s

function defined by Eq. �21� and z�=0 �see the Appendix�.
The averaged expression is given by

��xy
↑ 
 =

�0l1a0
4108

8�2kF
↑ 	 �3d�c1

Im�T��n�0��so��n�0�
sinh 2d1a

Den3
↑

�	 �3d�
cosh 2d1�z − a�

Den3
↑ , �23�

where

Den3
↑ = �q2 + c1

2 + ��−�2 + 2q Re �−�sinh 2d1a

+ 2c1 Im �− cosh 2d1a . �24�

The same calculation was carried out for spin down and the
total off-diagonal conductivity is shown in Fig. 2.

Equation �23� describes the contribution to the Hall con-
ductivity due to the additional spin-orbit scattering at the
interface. Contrary to the usual conductivity that decreases
with the thickness, this term increases because the additional

skew scattering at the interface is more pronounced for small
thicknesses.

We also calculate the bulk off-diagonal conductivity
�xy

↑bulk+�xy
↓bulk �see Fig. 3� using Eq. �10� with additional in-

tegration over z�. For this calculation we use the bulk scat-
tering parameters and the bulk coherent potential in Born
approximation �bulk= icbulk�1−cbulk�
bulk

2 Im Fbulk�zz�. The
details of the calculation can be found in the Appendix while
the averaged expression is given below

��xy
↑bulk
 =

�0l1
2a0

3 Im�Tbulk�bulk
so 
108

8�2kF
↑2 �	 �3d�

c1
�2

. �25�

In the case of a thin layer, ��xy
↑bulk
 shows an oscillating

behavior but it tends to a constant value when a→�, which
coincides with its value for the massive sample. If we take
into account the interfacial scattering, the expression for
�xy

bulk becomes too complex so we do not show it here. But
the thickness dependencies of �xy

bulk and the Hall angle
�H /���xy /�xx �for �xy ��xx� calculated using the complete
formula with renormalized Green’s functions are presented
in Figs. 4 and 5, respectively.

Besides that, it is interesting to check the validity of the
phenomenological relationship between the Hall resistance
�H and �=1 /�xx

5 10 15 20
a (Å)

1

2
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5

<
σ xx

>
(1

04 Ω
-1

cm
-1

)

FIG. 1. Averaged diagonal conductivity as a function of the

layer thickness a for kF
↑ =1.1�Ȧ−1�, kF

↓ =0.6�Ȧ−1�, l1=100�Ȧ�, l2

=60�Ȧ�, and c=0.3.
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)

FIG. 2. Averaged off-diagonal conductivity as a function of the

layer thickness a for kF
↑ =1.1�Ȧ−1�, kF

↓ =0.6�Ȧ−1�, l1=100�Ȧ�, l2

=60�Ȧ�, c=0.3, and �so=0.05�Ȧ−1�.
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FIG. 3. Averaged bulk off-diagonal conductivity as a function of

the layer thickness a for kF
↑ =1.1�Ȧ−1�, kF

↓ =0.6�Ȧ−1�, l1=100�Ȧ�, l2

=60�Ȧ�, �bulk
so =0.03�Ȧ�, cbulk=0.01, and 
bulk=1�Ȧ−1�.
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FIG. 4. Averaged bulk off-diagonal conductivity with interfacial

scattering as a function of the layer thickness a for kF
↑ =1.1�Ȧ−1�,

kF
↓ =0.6�Ȧ−1�, l1=100�Ȧ�, and l2=60�Ȧ�; bulk parameters �bulk

so

=0.03�Ȧ−1�, cbulk=0.01, and 
bulk=1�Ȧ−1�; interface parameters

�so=0.05�Ȧ−1�, c=0.3, and 
=1.5�Ȧ−1�.
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�H = b1� + b2�2. �26�

In order to do this, we plotted �H /���� in Fig. 6. As one
can see, this curve may be divided into two regions where
the dependence is approximately linear with different sign
for the coefficient b2; it is positive in quasiclassical limit of
the size effect �large thickness a� and negative in ultraquan-
tum region. We may explain this behavior as follows. In
quasiclassical regime, the diagonal conductivity smoothly �if
weak oscillations are neglected� decreases with increasing
thickness, which is due to additional contribution of the in-
terfacial electron scattering to the resistivity. On the contrary,
the contribution to the Hall conductivity due to more inten-
sive skew scattering at the interface increases so that the ratio
�xy /�xx increases with increasing resistance. In ultraquantum
regime, the diagonal conductivity continues to decrease due
to a decrease in the number of conductivity channels while
the skew scattering, responsible for the Hall conductivity,
decreases more rapidly due to an additional decrease in the
available phase space for scattering. As a result, the ratio
�xy /�xx decreases with increasing resistance.

III. GEOMETRIC MECHANISM OF EHE

In the previous sections we considered the thin ferromag-
netic film sandwiched between two insulating layers and
took into account the additional scattering on the defects of
the interfaces. However, in the case when the thickness of
the ferromagnetic layer is small, it can become discontinuous
due to the tendency of the metallic layer to coalesce when
deposited on an oxide layer, i.e., some oxidized insulating
columns can form inside the layer. We investigate the influ-
ence of this phenomenon on EHE. The insulating columns
were modeled by insulating cylinders of radius R extending
over the thickness of the metallic layer. The calculation was
done using the approximation of diffusive transport. We note
that in this section we do not give in detail the mechanism of
EHE, assuming that we know the value of �xy for the sample
without the insulating columns.

In the absence of precession, the diffusion equations are
given by

�n

�t
+

� je
x

�x
+

� je
y

�y
= 0, �27�

�m�

�t
+

� jm
x

�x
+

� jm
y

�y
= −

m�

�sf
, �28�

where n and m� = �0,0 ,m� are charge and spin accumulations,
respectively, je� and jm� are charge and spin currents, respec-
tively, and �sf is the spin-flip relaxation time.

For the stable state solution �n
�t = �m�

�t =0. For the charge and
spin currents, we have the system of equations

je
x = �xxE − Dxx� �n

�x
− ��

�m

�x
� − Dxy� �n

�y
− ��

�m

�y
� ,

�29�

je
y = �yxE − Dyy� �n

�y
− ��

�m

�y
� − Dyx� �n

�x
− ��

�m

�x
� ,

�30�

jm
x = ��xxE − Dxx���

�n

�x
−

�m

�x
� − Dxy���

�n

�y
−

�m

�y
� ,

�31�

jm
y = ��yxE − Dyy���

�n

�y
−

�m

�y
� − Dyx���

�n

�x
−

�m

�x
� ,

�32�

where E� = �E ,0 ,0� is the electric field, D�� and ��� denote
the components of diffusion coefficient and conductivity ten-
sor, respectively, � and �� are the coefficients of the spin
asymmetry of these components. The off-diagonal compo-
nents Dxy and �xy are proportional to the spin-orbit interac-
tion and are antisymmetrical in the x-y transposition. For a
metal with the cubic symmetry �xx=�yy and Dxx=Dyy �D0.

We insert Eqs. �29�–�32� into Eqs. �27� and �28� and after
some manipulations, we obtain two equations

�n = − ���m , �33�

���n + �m =
m

�sf
. �34�

Assuming that �sfD0�1−��2���sf
2

3 4 5
ρ (10−5Ω cm)

0.5

1.0

1.5

ρH
/ρ

(1
0−2

)

FIG. 6. Hall angle �H /� as a function of �=1 /�xx with the same
parameters as in Fig. 5.
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FIG. 5. Hall angle �H /� as a function of layer thickness a for

kF
↑ =1.1�Ȧ−1�, kF

↓ =0.6�Ȧ−1�, l1=100�Ȧ�, and l2=60�Ȧ�; bulk param-

eters �bulk
so =0.03�Ȧ−1�, cbulk=0.01, and 
bulk=1�Ȧ−1�; interface pa-

rameters �so=0.05�Ȧ−1�, c=0.3, and 
=1.5�Ȧ−1�.
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�m −
m

�sf
2 = 0. �35�

For the cylindrical defect shape, it is convenient to search
for solution in polar coordinates. For that, we rewrite Eq.
�35� as

1

r

�

�r
�r

�m

�r
� +

1

r2

�2m

��2 −
m

�sf
2 �

�2m

�r2 +
1

r

�m

�r
+

1

r2

�2m

��2 −
m

�sf
2

= 0, �36�

where � is the angle between x axis and the radius vector r�
with coordinates �x ,y�.

The solution of Eq. �36� is

m = m1�r�m2��� , �37�

m2��� = A1n cos n� + A2n sin n� . �38�

As
�2m2

��2 =−m2n2, Eq. �36� can be transformed

m2���� �2m1

�r2 +
1

r

�m1

�r
− � 1

�sf
2 +

n2

r2 �m1� = 0. �39�

The solution of Eq. �39� is

m1�r� = BkKk� r

�sf
� , �40�

m = �
n

�A1n cos n� + A2n sin n��Kk� r

�sf
� , �41�

where Kk�
r

�sf
� is the solution of the modified Bessel

equation.16

From Eq. �33�, it follows that

n = − ��m + n0, �42�

�n0 = 0. �43�

For n0, the solution is

n0 = �
n

�C1n cos n� + C2n sin n��
1

rn . �44�

Taking into account Eq. �33�, we can rewrite Eqs. �29�
and �30�

je
x = �xxE − Dxx

�n0

�x
− Dxy

�n0

�y
, �45�

je
y = �yxE − Dyy

�n0

�y
+ Dyx

�n0

�x
. �46�

It is now convenient to use the polar-coordinate system
and to write down r and � projections of the currents. Then
we can use the boundary conditions to find the unknown
coefficients. These projections are

jre
0 = �xxE cos � + �xyE sin � �47�

�usual term�, and


jre = − Dxx
�n0

�x
cos � − Dxy

�n0

�y
cos � − Dyy

�n0

�y
sin �

+ Dxy
�n0

�x
sin � �48�

�additional diffusion term�.
We can now make some transformations

�n

�x
=

�n

�r

�r

�x
+

�n

��

��

�x
, �49�

�n

�y
=

�n

�r

�r

�y
+

�n

��

��

�y
. �50�

Using the expressions for derivatives of r and � over x
and y, which is not too difficult to obtain, we write down the
charge and spin currents in polar coordinates as


jre = − D0
�n

�r
− Dxy

�n

r � �
, �51�


jrm
n = − D0��

�n

�r
− Dxy��

�n

r � �
, �52�


jrm
m = − D0

�m

�r
− Dxy

�m

r � �
, �53�


jrm
0 = ��xxE cos � + ��yxE sin � . �54�

To find the unknown coefficients in Eqs. �41� and �44�, we
use the boundary conditions on the surface of the cylinder, in
other words, r projection of the currents at these boundaries
are equal to zero,

jR
0n + 
jR

n = 0 ⇒ D0� �n0

�r
�

r=R

+ Dxy� �n0

R � �
�

r=R

=

− D0�
n

�C1n cos n� + C2n sin n��
n

Rn+1

− Dxy�
n

�C1n sin n� − C2n cos n��
n

Rn+1 .

�55�

This gives us the system

�xxE = − R−2�D0C11 − DxyC21� , �56�

�xyE = R−2�DxyC11 + D0C21� , �57�

with solution

C11 = −
D0�xx − Dxy�xy

D0
2 + Dxy

2 , �58�

C21 =
D0�xy + Dxy�xx

D0
2 + Dxy

2 , �59�
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n0 = −
R2E

r

1

D0
2 + Dxy

2 ��D0�xx − Dxy�xy�cos � − �D0�xy

+ Dxy�xx�sin �� . �60�

The spin current r projection at the boundaries is also
zero, which yields

jR
0m + 
jR

m = 0 ⇒ �E��xx cos � − �xy sin �� = D0� �m

�r
�

r=R

+ Dxy� �m

R � �
�

r=R

= D0�A11 cos �

+ A21 sin ��
�

�r
K1�� r

�sf
��

r=R

+ Dxy�− A11 sin �

+ A21 cos ��
1

R
K1� R

�sf
� . �61�

From Eq. �61� it follows that

A11 =
�E��xxD0K1�R + �xyDxyK1�R

R2�D0K1��
2 + �DxyK1�2 , �62�

A21 = −
�E�− �xxDxyK1 + �xyD0K1�R�R

R2�D0K1��
2 + �DxyK1�2 , �63�

where K1�= �
�rK�� r

�sf
��r→R.

We can now define the additional Hall field due to these
cylindrical topological defects, considering that the Hall
electrodes are the surfaces with coordinates y=a and y=−a.
This field is proportional to n�a�−n�−a�, where n=−��m
+n0. After averaging over the positions of the cylindrical
defects, homogeneously distributed within the layer, the Hall
drop of voltage reads

�VH
n = 2ER2�xy

�xx

a�

R̄2
, �64�

where R̄ is the average distance between the defects.
For R��sf �a, the second term −��m gives the contribu-

tion

�VH
m = − ���ER

�xy

�xx

K1 − RK1�

�RK1��
2 	

R

2a−R

ydy

�	
−�

� dx

x2 + y2

K1�
x2 + y2

�sf
� � − 2���

�xy

�xx
�R

R̄
�2

�sf .

�65�

The ratio of �VH=�VH
n +�VH

m to the original Hall voltage,

�VH
0 =2Ea

�xy

�xx
, for R=1 �nm� and R̄=10 �nm�, is estimated

as

�VH
n + �VH

m

�VH
0 �

�VH
n

�VH
0 =

�R2

R̄2
� 0.03. �66�

IV. CONCLUSION

It was shown that due to the additional scattering of elec-
trons on the defects of the metal-insulator interfaces, the total
conductance decreases. It follows from Eq. �22� that for
small values of the ratio a / l, the bulk conductivity is com-
pletely suppressed and effective conductivity is proportional
to the effective scattering length at the interfaces instead of
the bulk mean-free path. If we do not take into account the
additional skew scattering at the interfaces, the Hall conduc-
tivity decreases with decreasing the thickness of the ferro-
magnetic metallic layer. However, the contribution to the
Hall conductivity due to the additional skew scattering at the
interfaces increases. Therefore, the important characteristic
of the considered device, Hall angle �xy /�xx��xy /�xx, is
larger for the thin ferromagnetic layer than for the bulk one.
In addition, the presence of the insulator columns in the me-
tallic layer may further increase the value of the Hall effect.

In order to experimentally observe these effects, one has
to investigate the thickness dependence of the transport prop-
erties of a sandwich consisting of two insulating layers, for
example, Al2O3 or MgO �interfaces F/amorphous Al2O3 usu-
ally contain more defects, which is favorable for the obser-
vation of the predicted effects�, and a pure ferromagnetic
layer with a large mean-free path ��100 Å�, such as Ni, Co,
or Fe. However, when comparing the experimental results
with our predictions �see Fig. 6�, one has to treat with cau-
tion the region of high resistivity, where possible influence of
the side-jump scattering may give additional contribution to
� dependence of EHE.
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APPENDIX

In this additional section we present the details of the
calculation of the conductivity tensor. The complete expres-
sion for the bulk quasi-two-dimensional diagonal conductiv-
ity is

�xx
↑ =

�0l1108

2�kF
↑ 	 �3d�Nom1

↑

c1Den1
↑ , �A1�

where

Nom1
↑ = �q2 + c1

2��2c1�Im ��cosh 2d1a + �q2 + c1
2 + ���2

+ 2q Re ��sinh 2d1a� − 2c1�q + Re ���q2

+ c1
2�sinh 2d1�z − a�sin 2c1z

+ 2c1 Im �−�2 sinh2 d1z�cos 2c1�z − a�

+ 2qc1 sin 2c1�z − a�� + �q2 + c1
2�cosh 2d1�z − a��

+ �q2 + c1
2 + ���2 + 2q Re ����q2 + c1

2�sinh 2d1�z

− a�cos 2c1z − sinh 2d1z��q2 − c1
2�cos 2c1�z − a�

+ 2qc1 sin 2c1�z − a��� , �A2�
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Den1
↑ = �q2 + c1

2��2c1�Im ��sinh 2d1a + �q2 + c1
2 + ���2

+ 2q Re ��cosh 2d1a� − �q4 − 6q2c1
2 + c1

4 + ����2

+ 2q Re ���q2 − c1
2� − 4qc1

2 Re ��cos 2c1a

− 2qc1�2�q2 − c1
2 + q Re �� + ���2�sin 2c1a . �A3�

Equation �22� was obtained from the above formula by
averaging out the oscillatory terms. The off-diagonal conduc-
tivity due to the spin-orbit interfacial scattering is calculated
using Eqs. �10� and �21� with z�=0 by integrating over z�

�xy
↑ =

�0l1a0
4108

2�2kF
↑ 	 �3d�c1

Den2
↑ Im�T��n�0��so��n�0�
�q2

+ c1
2�sinh 2d1a �	 �3d�

Den2
↑ ��q2 + c1

2�cosh 2d1�z − a�

− �q2 − c1
2�cos 2c1�z − a� − 2c1q sin 2c1�z − a�� ,

�A4�

where

Den2
↑ = �eik1a�q + ic1�2�1 +

�−

q + ic1
�

− e−ik1a�q − ic1�2�1 +
�−

q − ic1
��2

. �A5�

One can see from Eq. �A5� that �xy
↑ oscillates with the

thickness a and the distance from the interface z=0. Its be-

havior becomes more clear after averaging over oscillations
that was done in Eq. �23�.

As it was already mentioned in Sec. II B, the bulk off-
diagonal conductivity �xy

bulk is calculated using Eq. �10� with
the bulk scattering parameters and the bulk coherent poten-
tial in Born approximation. In the absence of the interfacial
scattering, this approach yields

�xy
↑bulk =

�0l1
2a0

3 Im�Tbulk�bulk
so 
108

8�2kF
↑2

�	 �3d�

c1

�q2 + c1
2�2sinh 2d1a

Den4
↑

�	 �3d�

c1

1

Den4
↑ � ��q2

+ c1
2�2sinh 2d1a − �q4 − c1

4��sinh 2d1z cos 2c1�z − a�

− sinh 2d1�z − a�cos 2c1z�

+ 2qc1�sinh 2d1z sin 2c1�z − a� + sinh 2d1�z

− a�sin 2c1z�� , �A6�

where

Den4
↑ = cosh 2d1a�q2 + c1

2�2 − �q4 − 6q2c1
2 + c1

4�cos 2c1a

+ 4c1q�q2 − c1
2�sin 2c1a . �A7�
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